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10 Abstract 

11 Three consecutive dry winters (2015-2017) in southwestern South Africa (SSA) resulted in 

12 the Cape Town “Day Zero” drought in early 2018. The contribution of anthropogenic global 

13 warming to this prolonged rainfall defcit has previously been evaluated through observations 

14 and climate models. However, model adequacy and insuffcient horizontal resolution make it 

15 diffcult to precisely quantify the changing likelihood of extreme droughts given the small re-

16 gional scale. Here we use a new high-resolution large ensemble to estimate the contribution 

17 of anthropogenic climate change to the probability of occurrence of multi-year SSA rainfall 

18 defcits in past and future decades. We fnd that anthropogenic climate change increased 

19 the likelihood of the 2015-2017 rainfall defcit by a factor of fve-to-six. The probability of such 

20 an event will increase from 0.7% to 25% by the year 2100 under an intermediate-emission 

21 scenario (SSP2-4.5) and to 80% under a high-emission scenario (SSP5-8.5). These results 

22 highlight the strong sensitivity of the drought risk in SSA to future anthropogenic emissions. 
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23 Signifcance Statement 

24 The Cape Town “Day Zero” drought was caused by an exceptional three-year rainfall defcit. 

25 Through the use of a higher resolution climate model, our analysis further constrains previ-

26 ous work showing that anthropogenic climate change made this event fve-to-six times more 

27 likely relative to early 20th century. Furthermore, we provide a clear and well-supported 

28 mechanism for the increase in drought risk in SSA through a dedicated analysis of the cir-

29 culation response, which highlights how – as in 2015-17 – a reduction in precipitation during 

30 the shoulder seasons is likely to be the cause of drought risk in SSA in the 21st century. 

31 Overall, this study greatly increases our confdence in the projections of a drying SSA. 
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32 The Day Zero Cape Town drought was one of the worst water crises ever experienced 

n a metropolitan area1,2. Droughts are a regular occurrence in SSA, having occurred dur-

ng the late 1920s, early 1970s, and more recently during 2003-2004 (Fig. 1a,b). However, 

he extended winter (April-September, AMJJAS) three-year rainfall defcit (Fig. 1a-b; SI Ap-

endix, Fig. S1) which drove the 2015-2017 Cape Town drought2–8 was exceptional over the 

ast century4,9. Storage in reservoirs supplying water to 3.7 million people in the Cape Town 
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38 metropolitan area dropped to about 20% of capacity in May 2018. As a consequence, strict 

39 water usage restrictions were implemented to delay water levels reaching 13.5%, the level 

40 at which much of the city’s municipal supply would have been disconnected7, a scenario re-

41 ferred to as “Day Zero” by the municipal water authorities7. Above average winter rain over 

42 the rest of the 2018 austral winter allowed Cape Town to avoid the Day Zero scenario. 

43 While poor water management practices and infrastructure defciencies worsened the 

44 crisis10,11, the 2015-2017 rainfall defcit was the main driver of the drought5. To facilitate the 

45 improvement of water management practices and the infrastructure necessary to make the 

46 system more resilient, it is critical to frst determine how likely a meteorological drought like 

47 the one in 2015-2017 might be in the coming decades. Increased aridity is expected in most 

48 of southern Africa12–14 as a consequence of the Hadley Cell poleward expansion4,15–18 and 

49 southward shift of the Southern Hemisphere jet stream19. Second, the risk of more extreme 

50 droughts should be quantifed to understand the potential for emerging risks that could make 

51 a Day Zero event in Cape Town unavoidable. 

52 Previous work5 has suggested that the Day Zero drought may have been made 1.4-

53 to-6.4 times more likely over the last century due to +1 K of global warming, with the risk 

54 expected to scale linearly with one additional degree of warming. Such estimates make 

55 use of statistical models of the probability distribution’s tail (e.g., the Generalized Extreme 

56 Value) applied to observations and previous-generation (i.e., as those participating to the 

57 Coupled Model Intercomparison Project Phase 320 and 521) climate models. CMIP3 and 
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58 CMIP5 models have been shown to have a systematically biased position of the Southern 

emisphere jet stream toward the equator due to insuffcient horizontal resolution19. This 

roduces a large uncertainty in model projections of jet stream shifts22,23, thus hindering 

ealistic projections of Southern Hemisphere climate change. Furthemore, for hydroclimatic 

ariables, a statistical extrapolation of the probability distribution’s tail might have inherent 

imitations in providing precise estimates of the event probability of future extreme events, 

lthough its precision profts from the use of large ensembles24,25. 

Large ensembles of comprehensive climate models provide thousands of years of data 

hat allow direct construction of the underlying probability distribution of hydroclimatic ex-

remes without relying on a hypothesized statistical model of extremes25,26. South African 

inter rains have high interannual and decadal variability due to El Niño-Southern Oscilla-

ion27, the Southern Annular Mode28 and interdecadal variability29. A multi-decade to multi-

entury record may be required to detect the emergence of statistically signifcant trends in 

egional precipitation extremes. A large ensemble is thus a powerful method to isolate, at 

he decadal timescale, internal natural variability (e.g., SI Appendix, Fig. S2) from the forced 

ignal30–32. 
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74 The SPEAR large ensemble 

75 To tackle this problem, we use a comprehensive suite of new large ensemble simulations 

76 from the newly developed Seamless System for Prediction and EArth System Research 

77 (SPEAR) global climate model developed33 at the Geophysical Fluid Dynamics Laboratory 

78 (GFDL, see Methods). SPEAR is the latest GFDL modeling system for seasonal to mul-

79 tidecadal prediction and projection, and it shares underlying component models with the 

80 CM434 climate model, which participates to the Coupled Model Intercomparison Project 

81 Phase 6 (CMIP6)35. In particular, we use the medium horizontal atmospheric resolution 

82 (50 km) version of SPEAR, i.e., SPEAR_MED, which has been designed to study regional 
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83 climate and extremes. The SPEAR_MED simulations include a 3,000-year preindustrial 

ontrol simulation (CTRL), and three 30-member ensembles that account for changing at-

ospheric compositions arising from natural sources only (NATURAL), and natural plus an-

ropogenic sources (HIST+SSP2-4.5, HIST+SSP5-8.5, Methods for details). The relatively 

igh horizontal resolution of SPEAR_MED – which makes this large ensemble unique – is 

ey to better resolve the steep coastal SSA topography, which leads to orographic enhance-

ent of rainfall during frontal days4. SPEAR_MED is an excellent tool to investigate SSA 

roughts because it has a realistic representation of the SSA winter rainfall pattern (Fig. 1c-

) and seasonal cycle (Fig. 1f), and it correctly reproduces the amplitude of the interannual, 

ultiannual and decadal natural variability of the SSA winter rainfall (SI Appendix, Fig. S3). 
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93 Event attribution to anthropogenic climate change 

4 As anthropogenic global warming weakens the basic stationarity assumption which has his-

5 torically been at the foundation of water management36, two key questions are: to what 

6 extent did anthropogenic global warming make the Day Zero drought more likely? And: how 

7 will the probability of occurrence of another similar or worse meteorological drought change 

8 in the coming decades? To address these questions, we frst assess if the probability distri-

9 bution of anomalies of the three-year-mean Winter Rainfall Index (WRI, see Methods) has 

0 already signifcantly changed. We directly compare the time-evolving probability distribution 

1 associated with successive twenty-year time windows with that associated with only inter-

2 nal climate variability obtained from a long control run at preindustrial forcing (CTRL; see 

3 Methods for details). The two probability distributions are statistically indistinguishable at 

4 the 99.9% level per the Kolmogorov-Smirnov test, during the twenty-year period 1980-2000 

5 (Fig. 2a), but then start to signifcantly differ from 1990-2010 onward (Fig. 2b-d). Here-

6 after we refer to the 2015-2017 WRI negative anomaly as “event_1517”. The average of 

7 the event_1517 probabilities in the fve decades 1921-1970 is approximately 0.7% (Fig. 2e). 
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108 This is slightly smaller than the value from the 3,000-year preindustrial control run and with 

the NATURAL experiment (1%) – which proft from the much longer time span (SI Appendix, 

Fig. S4a) – but nevertheless consistent within the 95% uncertainty interval. The event prob-

ability is stationary up to 1980-2000, after which it starts increasing (Fig. 2e). For 2015-2017 

the event probability – obtained by linear interpolation of the 2000-2020 and 2010-2030 val-

ues, is 3.7 % with a [2.5%,4.7%] 95% confdence interval. This implies a risk ratio – i.e., the 

ratio of the probability of the event at at given time to its probability in the early 20th century 

– of 5.5 times, with a confdence interval of 4 to 8 (Fig. 2g). Thus, an extreme event that had 
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116 an average recurrence interval37 of one hundred years in the early 20th century reduces to 

117 25-year recurrence interval by present day. This is consistent with previous work5 in spite of 

118 the different event defnition between the two studies. 

119 Drought risk projections 

120 In the high-emission scenario SSP5-8.5 (intermediate-emission scenario SSP2-4.5), the 

121 event_1517 probability – i.e., the likelihood that rainfall is below the event_1517 thresh-

122 old for any random three year segment within the twenty-year window – is projected to rise 

123 to 20% (13%) around 2045 (Fig 2f and SI Appendix, Figs. S5 and S6) and to reach 80% 

124 (25%) by the end of this century. For the SSP5-8.5 (SSP2-4.5) scenario, the likelihood of an 

125 event_1517 would thus increase by a factor of 120 (40) relative to earlier in the twentieth-

126 century (Fig. 2h). This implies that the expected number of such droughts in 2081-2100 will 

127 be approximately probability×(20 years/3 years), i.e., 5.3 (2.3) under SSP5-8.5 (SSP2-4.5). 

128 

129 increase, we fnd that, for each degree of warming, the risk ratio grows at a slower rate after 

130 a fast, ongoing acceleration (SI Appendix, Fig. S7). This implies a transition to substantially 

131 drier and persistent wintertime conditions over SSA. 

132 Using the same methodology (see Methods), we can also estimate the distribution and 
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133 the probability of occurrence of a four-year WRI anomaly at the same intensity of event_1517 

Fig. 2i-j). This has not occurred yet but, if it occurred, could lead to an unavoidable Day Zero. 

n the absence of anthropogenic forcing (i.e., CTRL and NATURAL), such an event has a 

robability of occurrence of 0.4% (vs. approximately 1% for a three-year drought). Presently, 

he probability of occurrence for it to happen has already substantially increased relative to 

he early 20th century (2%), and it is projected to be 15% (8%) by mid-century under SSP5-

.5 (SSP2-4.5). By the end of the 21st century, a four-year WRI anomaly will be almost as 

kely as three-year rainfall anomaly of intensity comparable to the 2015-2017 event. 

This suggests that the duration of meteorological droughts will increase in SSA. We esti-
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142 mate the probability distribution of the severe (i.e., ≤ -6 mm month−1) winter (i.e., AMJJAS) 

143 WRI anomalies as a function of duration and intensity under the SSP2-4.5 (Fig. 3a-c) and 

144 SSP5-8.5 scenario (Fig. 3d-f). Historically, the largest (in magnitude) negative WRI anoma-

145 lies typically last 1 year. There is a non-negligible probability of two-to-three-year persisting 

146 anomalies at about -10 mm month−1 , while anomalies lasting longer than three years are 

147 unlikely (Fig. 3). Anthropogenic climate change will make meteorological winter droughts 

148 lasting three to ten years more likely and more acute, especially under the SSP5-8.5 sce-

149 nario (Fig. 3d-f). 

150 Large scale circulation shifts 

151 The future increase in the probability of occurrence of intense and prolonged rainfall defcits 

152 (Fig. 2f and Fig. 3) is suggestive of a substantial climatic shift in the mean wintertime condi-

153 tions of SSA in the coming decades. In agreement with state-of-the-art general circulation 

154 models6,38, SPEAR_MED indicates a substantial AMJJAS WRI reduction during the twenty-

155 frst century (SI Appendix, Fig. S8a), especially in the shoulder seasons of April-May and 

156 August-October (SI Appendix, Fig. S8b). In both scenarios, the amplitude of the shift will be 

outside the range of what could occur from low-frequency internal climate variability in the 
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158 decade 2020-2030 (Fig. 4a-c), but the magnitude of the negative anomaly will be substan-

tially larger under a high-emission scenario. 

The prolonged rainfall defcit experienced during winters 2015-2017 occurred along with 

positive large scale anomalies in sea level pressure on the southern fank of the South 

Atlantic and South Indian Subtropical High4,18. Higher sea level pressure has been invoked 

as the cause of fewer extratropical cyclones over the South Atlantic and of a southward shift 

159 

160 
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164 of the moisture corridors contributing to winter rainfall3. Other studies4 fnd no signifcant 

165 regional trends over the last forty years in the number of cold fronts making landfall over 

166 SSA, but highlight the shorter duration of rainfall events associated with cold fronts due to 

167 larger sea level pressure during post-frontal days. Positive signifcant trends in sea level 

168 pressure have been observed in the Southern Hemisphere over the last forty years and 

169 have been related to the multidecadal expansion of the Southern Hemisphere’s summer and 

170 fall Hadley Cell15,16,18. In SPEAR_MED, the forced (i.e., ensemble mean) decadal changes 

171 in sea level pressure are visible in the period 1980-2020 (SI Appendix, Fig. S9), with the 

172 typical patterns that might dominate at end of the twenty-frst century (SI Appendix, Fig. S10) 

173 emerging around 2000-2010. This is in agreement with previous studies16,17 suggesting that 

174 the forced signal associated with the expansion of the Hadley Cell has emerged above the 

175 noise of internal variability in the Southern Hemisphere in the 2000-2010 decade. 

176 There is an evident seasonality in the projected large scale circulation anomalies over the 

177 South Atlantic Ocean and south of SSA, with the most evident forced signals in April-May and 

178 August-September (Fig. 5). Positive anomalies of mean sea level pressure are overall sug-

179 gestive of a poleward shift of the Hadley cell. Projected changes in the 300 hPa eddy kinetic 

180 energy (a proxy for the storm track) show a southward shift of the midlatitude storm track in 

181 AM and AS, but not JJ. Indeed, the weakest forced signals are projected in SPEAR_MED at 

182 the peak of the rainy season in June-July (Fig. 5), consistent with the decadal forced mean 

183 sea level pressure signals in the 2010-20 decade (SI Appendix, Fig. S9) and with the percent 
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184 WRI reductions (SI Appendix, Fig. S8b). Remarkably, the 2015-2017 meteorological drought 

was also driven mainly by April-May and August-September rainfall defcits, associated with 

large scale anomalies more evident in, e.g., April-May, and similar to those just described 

above3,4,6. These seasonal aspects of the Southern Hemisphere forced circulation changes 

coherently suggest that future meteorological droughts might indeed have a similar seasonal 

evolution as that in 2015-2017. 

Comparison with other large ensembles 

We analyzed additional large ensembles from coupled models with the same or coarser res-

185 
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190 

191 

192 olution that can provide an important context to our results and inform us about uncertainties 

193 due to model differences32,39: SPEAR_LO, the Forecast-Oriented Low Ocean Resolution 

194 model with (FLOR_FA) and without (FLOR) fux adjustment, the Community EARTH Sys-

195 tem Model Large Ensemble, CESM-LENS30, and the Max Planck Institute Grand Ensemble, 

196 MPI-GE26 (see Methods and SI Appendix for the evaluation of these models). 

197 All models suggest a substantial rainfall reduction (SI Appendix, Figs. S8b, S11, S12), 

198 with CESM-LENS and MPI-GE projecting a percent precipitation reduction pretty uniform 

199 throughout AMJJAS. Mean sea level pressure changes are overall suggestive of a poleward 

200 expansion of the descending branch of the Hadley Cell (SI Appendix, Fig. S10), but with 

201 anomaly patterns that are more consistent across models in April-May and less consistent in 

202 June-September. Indeed, the Subtropical Anticyclone response in the Southern Hemisphere 

203 features larger intermodel uncertainty in the austral winter40. A more prolonged dry season 

204 into the late austral fall (AM) over SSA is therefore a robust indication in terms of future 

205 precipitation reduction and droughts risk. 

206 Relative to SPEAR_MED, the risk estimate is lower in SPEAR_LO (Fig. 2g), while FLOR 

207 suggests similar values. MPI-GE, FLOR_FA and CEMS-LENS have a risk ratio larger than 

SPEAR_MED by a factor 1.5, 1.8 and 2.8, respectively. By the end of this century, all models 

10 

208 



209 agree on a probability of occurrence for the event_1517 at least ninety times larger than in 

the twentieth century (Fig. 2h) under the highest emission scenarios (SSP5-8.5 or RCP8.5). 

Middle-of-the-road scenarios (SSP2-4.5 or RCP4.5) tend to suggest a risk ratio of about 

thirty, while the low-emission RCP2.6 scenario (only available for MPI-GE), aiming to limit 

the increase of global mean temperature to 2 K, project a risk ratio of about 13. 

210 

211 

212 

213 

214 Conclusions 

215 The use of a new high-resolution large ensemble provides a signifcantly improved ability 

216 to simulate regional-scale SSA droughts in both present and future conditions despite large 

217 internal climate variability. We fnd that the rainfall defcit that led to the Day Zero drought 

218 was 5.5 times more likely due to anthropogenic climate change, with a confdence interval of 

219 [4,8]. We therefore are able, through the use of a model with higher resolution and better cli-

220 matology, to further constrain the risk ratio of SSA drought at and above the original [1.4,6.4] 

221 estimate from ref.5. This highlights the usefulness of high resolution climate models to study 

222 future drought risk and provides additional guidance to design water management to avoid 

223 extreme drought. 

224 Looking at the future, our results point to a dramatic increase in the risk of meteorological 

225 droughts of similar or even more serious magnitude by the end of the twenty-frst century. 

226 Similarly to what occurred in 2015-2017, this increased risk of meteorological droughts is 

227 associated with a substantial rainfall reduction, especially in the shoulder season (April-May 

228 and August-September). 

229 A high-emission and intermediate-emission future scenario are analyzed, highlighting 

230 that while there is uncertainty in the increase in drought risk due to future uncertainty in 

231 forcings, both scenarios lead to substantial increases, such that a drought becomes a com-

232 mon occurrence. Combined with the likelihood of increased water demand due to a growing 

population3 and increased evaporation due to higher temperatures41, the more frequent oc-
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234 currence of wintertime droughts will likely present a major challenge for managing water 

resources in the region without adaptation and preparation. While these results are for SSA, 

such shifts in drought risk are likely to occur in other arid locations with variable precipitation 

and large scale circulation shifts increasing the likelihood of multi-year extreme droughts. 

These methods could then be applied elsewhere to identify emerging drought risks. 

235 

236 
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238 

239 Methods 

240 SPEAR model and experiments 

241 The main conclusions of this study are obtained from the Seamless System for Prediction 

242 and EArth System Research (SPEAR)33. SPEAR represents the newest modeling system 

243 for seasonal to multidecadal prediction which incorporates new model development compo-

244 nents that have occurred in the last decade at NOAA Geophysical Fluid Dynamics Labo-

245 ratory. These include: a new dynamical core42, revised atmospheric physics43, a new sea 

246 ice and ocean model44 and an enhanced land model45. The SPEAR atmospheric model 

247 uses 33 levels in the vertical and is run at different atmospheric-land horizontal resolutions: 

248 0.5◦(SPEAR_MED) and 1◦ (SPEAR_LO) in this paper. The intermediate 0.5◦ confguration, 

249 SPEAR_MED, is a compromise between the possibility to run a large ensemble of simu-

250 lations with available computation resources and retaining enough horizontal resolution to 

251 study regional climate and extremes. It is worth noting that the SPEAR_MED large en-

252 semble features a horizontal grid-spacing (0.5◦) that is fner than those used in most of the 

253 previously used large ensembles (with the exception of FLOR,31), thus making these GFDL 

254 ensembles a unique and unprecedented tool to study extremes and regional climate. 

255 

256 We use four different numerical experiments: (1) a long-term control simulation (CTRL) 
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257 to evaluate unforced natural variability; (2) an ensemble driven by natural forcing only (NAT-

URAL) to provide a baseline with only natural forcing (i.e., volcanic eruptions and solar cy-

cles); (3) an ensemble driven by observed natural and anthropogenic forcing up to 2014 

(HIST) and then according to the intermediate (≈+3 K of global warming by the end of the 

twenty-frst century) Shared Socioeconomic Pathway (SSP2-4.5) developed for the Cou-

pled Model Intercomparison Project Phase 6 (CMIP6)35,46; and (4) an ensemble driven by 

observed natural and anthropogenic forcing up to 2014 (HIST) and then according to the 

CMIP6 high-emission, fossil fuel dominated (≈+5 K of global warming by the end of the 

twenty-frst century) Shared Socioeconomic Pathway (SSP5-8.5). 

The 3000-year CTRL simulation is driven by CO2 forcing kept constant at 1850 levels. 

258 
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266 

267 Climate drifts associated with this long-term integrations are estimated to be very small and 

268 statistically insignifcant for the winter SA rainfall. The 30 members of the NATURAL en-

269 semble are driven by the same observed natural forcing (i.e., solar and volcanic) until year 

270 2014, and by only solar forcing (quasi-11-year cycle) after 2014, with the anthropogenic 

271 forcing held fxed at the 1921 level. In the HIST+SSP5-8.5 (HIST+SSP2-4.5) ensemble, 

272 each member is driven by observed natural and anthropogenic forcing (greenhouse gases, 

273 anthropogenic aerosols, ozone) up to year 2014, and by the SSP5-8.5 (SSP2-4.5) forcing 

274 afterwards. More details about how the SPEAR large ensemble is designed can be found in 

275 Delworth et al. (2020)33. 

276 

277 Model Evaluation 

278 In addition to the model’s ability to reproduce the wintertime southern African climatology 

279 (Fig. 1c-e), the performance of SPEAR_MED in simulating wintertime rainfall variability and 

280 historical trends (1951-2017) over SSA is evaluated against three different observational 

281 land rainfall datasets: the Global Precipitation Climatology Centre (GPCC) dataset47 version 
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282 7, the Climate Research Unit high-resolution grids of monthly rainfall at the University of 

East Anglia48, version 3.24, and the University of Delaware (UDEL) precipitation dataset, 

version 5 (http://climate.geog.udel.edu/∼climate/), all at 0.5◦ resolution. The choice of these 

three gridded observed datasets, in place of scattered measurements from the South African 

Weather Service meteorological stations, is dictated by the need to be able to compare mod-

283 

284 

285 

286 

287 els with observations, as done in previous studies5. The values of these three precipitation 

288 datasets for SSA are obtained from a limited number of stations and different interpola-

289 tion algorithms. As a consequence, they can feature, locally, considerable differences (e.g., 

290 Fig. 1a and SI Appendix, Fig. S1). However, differences in area-averaged metrics like, e.g., 

291 the WRI, are minimal (Fig. 1b), thus making our results independent from the choice of the 

292 single precipitation dataset. 

293 In order to have a realistic representation of the width of the distribution of rainfall anoma-

294 lies, it is key that SPEAR_MED reproduces the interannual, multiannual and decadal natural 

295 variability of the SSA winter rainfall. To check this, we work out the standard deviation of the 

296 detrended full, three-year and ten-year low-pass-fltered WRI from the three observational 

297 datasets and the SPEAR_MED ensemble members over the common period 1921-2010 (SI 

298 Appendix, Fig. S3). The standard deviation of the observations is between 5 mm month−1 

299 (CRU) and 6 mm month−1 (GPCC, UDEL) for the three-year low-pass-fltered WRI. The stan-

300 dard deviation values from the model range from 4 to 6.3 mm month−1 . The observed values 

301 are therefore within the range from the model, suggesting that the model has the ability to 

302 properly estimate the magnitude of three-year lasting droughts. Similarly, a good agreement 

303 between SPEAR_MED and observations exist for the standard deviations calculated from 

304 the unfltered WRI time series (interannual variability) and from ten-year low-pass-fltered 

305 WRI (decadal and longer variability) too. 

306 The effect of internal natural variability is large for SSA winter rainfall27–29, thus it is not 

307 appropriate to compare observed AMJJAS rainfall trends directly with the ensemble mean 
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308 or with each single ensemble member, which may show contrasting signs (SI Appendix, 

Fig. S2). Instead, we evaluate if SPEAR_MED’s historical trends of AMJJAS rainfall are 

consistent with observations over SSA. To do so, we compute rainfall trends over the last 67 

years (1951-2017) in GPCC, CRU and UDEL, and compare them with individual members 

of the HIST+SSP5-8.5 ensembles over the same time period. 

If the observed trend at one grid point is within the range of those simulated by the 30 

309 

310 

311 

312 

313 

314 HIST ensemble members, then we say that the model is consistent with observations in that 

315 grid box. We fnd that SPEAR_MED is consistent with observations over most of southern 

316 Africa (SI Appendix, Fig. S13). 

317 Additional large ensembles 

318 To assess the robustness and model-dependence of our results, we analyze fve additional 

319 large ensembles (see Table S1): (1) the SPEAR_LO ensemble33, (2) the GFDL Forecast-

320 Oriented Low Ocean Resolution (FLOR) model, at 0.5◦ land/atmosphere resolution, (3) the 

321 fux-adjusted FLOR (FLOR_FA) large ensembles, obtained imposing temperature and salin-

322 ity fux adjustments at the ocean surface to FLOR49 (both with a land-atmospheric horizon-

323 tal resolution of 0.5◦), (4) the Community EARTH System Model Large Ensemble, CESM-

324 LENS30, with land-atmospheric horizontal resolution of approximately 1◦ , and (5) the Max 

325 Planck Institute Grand Ensemble, MPI-GE26, with land-atmospheric horizontal resolution of 

326 1.8◦ These additional large ensembles are available with various CMIP5 scenarios and are 

327 documented in Table S1. An evaluation of the wintertime climatology over SSA shows that 

328 these models all underestimate AMJJAS mean rainfall (Fig 1c-e and SI Appendix, Fig. S14 

329 and Table S2). With the exception of SPEAR_LO, these models also underestimate the 

330 standard deviation of the full three-year and ten-year low-pass-fltered Winter Rainfall In-

331 dex (SI Appendix, Fig. S3). Critically, this means they also underestimate the width of the 

332 probability distribution of the three-year AMJJAS rainfall anomalies (SI Appendix, Fig. S15). 
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333 In particular, CESM-LENS and FLOR_FA have standard deviations that are 50% and 40% 

smaller, respectively, suggesting that they are poor tools for risk analysis over SSA. As they 

substantially underestimate the probability of occurrence of event_1517, to quantify changes 

in risk in a manner that implicitly account for model biases we use a three-year Winter Rain-

fall Index anomaly corresponding to the 1st percentile, which is the percentile to which -11.5 

mm/month corresponds to in observations and SPEAR_MED. 

Winter Rainfall Index 

334 

335 

336 

337 

338 

339 

340 In this study we focus on the regional scale drought of the Western Cape. We thus use the 

341 annual time series of the Winter Rainfall Index (WRI)29 to monitor interannual variability and 

342 monthly rainfall anomalies. To defne the WRI, we frst select the grid points where at least 

343 65% of the total annual rainfall occur from April to September (Fig. 1c-e) and SI Appendix, 

344 Fig. S13. Then, we take the areal mean of the extended winter (i.e., April-September) rain-

345 fall over the irregular region defned above (Fig. 1c-e, SI Appendix, Fig. S13). The WRI is 

346 thus the area-averaged rainfall over the portion of SSA that experiences a dry summer and 

347 a wet winter, that is a Mediterranean rainfall regime. This area encompasses the region of 

348 intensely irrigated agriculture surrounding the metropolitan area of Cape Town as well as the 

349 water basins of the Breede and Berg Rivers, where dams supplying water to Cape Town are 

350 located. 

351 

352 Detectability of the mean rainfall change 

353 To determine where and when the decadal changes in AMJJAS rainfall starts being caused 

354 by external forcing and not by multidecadal variability, we apply a Monte Carlo approach to 

355 the long CTRL run: at each grid box, we randomly choose a 10-yr period and a nonover-

356 lapping 50-yr period (to mimic 1921-1970). Then, we compute the time mean difference 
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357 between the 10-yr and 50-yr time series. This difference is solely associated with internal 

natural variability of the climate system. This process is repeated 30 times (to mimic the 

30-member ensemble), we then take the ensemble mean of these differences. The whole 

process is then repeated 10,000 times to create an empirical probability distribution of these 

ensemble mean differences, which is used to assess the detectability of decadal changes 

in rainfall. Anomalies outside the range of the distribution are attributed to external forcing 

and considered detectable against internal climate variability (Fig. 4 and SI Appendix, Figs. 

S11-S12). 

358 

359 

360 

361 

362 

363 

364 

365 Estimation of the probability distribution 

366 We derive a probability distribution of the three-year mean WRI anomalies due to natural 

367 variability alone from the long CTRL run. We randomly select a 50-year and three-year 

368 sequence (non-overlapping), and then calculate the anomaly of the three-year period relative 

369 to the 50-year climatology. This choice mimics the 2015-2017 mean minus the 1921-1970 

370 mean. We repeat this process N times (N=10,000) to form a distribution of the three-year 

371 WRI anomalies (Fig. 2a-d). The probability of occurrence of experiencing a three-year WRI 

372 anomaly equal to or less than the 2015-2017 anomaly – as per the gridded datasets – is 

373 about 1% in CTRL, and 0.7% from HIST taking the average of decadal probabilities over 

374 1921-1970, respectively (Fig. 2e). Similarly, we estimate the distribution of the four-year 

375 WRI anomaly. The probability of occurrence of a WRI anomaly of the same intensity but of 

376 one additional year of duration is 0.4% and 0.2% from the CTRL and HIST, respectively. 

377 To evaluate the decadal change in the probability of occurrence of a three-year WRI 

378 anomaly equal to or worse than that of 2015-17, we empirically estimate a decadal-varying 

379 probability distribution using the HIST and SSP5-8.5 (SSP2-4.5) experiments. The probabil-

380 ity distribution is estimated for a 20-year time window, so that, for example, that referred to 

381 2010 is built from all years from 2001 to 2020. This choice is motivated by the need to have 

17 



382 a time period not too wide in order to assume the stationarity of the probability distribution, 

but at the same time a number of instances large enough to allow for suffciently accurate 

estimates of probabilities of rare events (e.g., 100-year return time). In a 20-year time win-

dow there are eighteen different three-year WRI anomalies (relative to the climatological 

reference period 1921-1970). This leads to 18×30=540 different values when considering 

all the 30 ensemble members, from which we empirically build the decadal probability dis-

tribution. Once we have decadal probability distribution, we can estimate the probability of 

occurrence, for each bi-decadal period, of three-year WRI anomaly equal to or less than that 

observed in 2015-2017 (-11.5 mm month−1 , obtained averaging GPCC, CRU and UDEL) for 

any random three year segment within the 20-year time window. The 95% confdence inter-

val in these probabilities are estimated by applying bootstrap-with-replacement resampling 

10,000 times. The same methodology is applied to estimate the probability of occurrence of 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 four-year droughts. 

395 We quantify the uncertainty in the estimate of the decadal probability of occurrence, de-

396 rived from only 540 different three-year rainfall anomaly values, as follows: we take the long 

397 3,000-year CTRL and randomly select a 50-year and three-year non-overlapping periods 

398 and estimate the difference. We repeat this step N times (with N=10,000) to obtain a large 

399 population sample of N three-year anomalies, from which the probability of the event_1517 

400 is estimated to be ≈1%. From this large sample we then randomly draw M realizations (with 

401 replacement), with M ≤ N and estimate the probability of occurrence. For each value of M 

402 we repeat the last step 10,000 times and obtain 10,000 different probability estimates which 

403 allows us to estimate the 95% confdence interval (SI Appendix, Fig. S4b). As expected, the 

404 confdence interval decreases with M up to approximately [0.9%,1.2%] for M=10,000. For 

405 values of M less than 300, the uncertainty is so large that it is impossible to have any sensible 

406 estimate of the probability of the event. For M=540, the confdence interval is approximately 

407 [0.5%,1.7%], which we can consider suffciently accurate for our purposes. 
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408 Joint probability distribution of drought intensity and duration 

409 The probability distribution of a drought in the Cape Town’s Mediterranean area as a func-

ion of duration and intensity is estimated from the historical and projected AMJJAS WRI 

nomaly time series. The focus in this paper is on severe droughts, therefore we select, for 

ach time series, all contiguous years for which the WRI anomaly is below -0.75 standard 

eviation (≈ -6 mm month−1). With this choice we exclude years that were moderately and 

ery moderately dry. For each of these segments, we work out the mean WRI anomaly by 

veraging the annual WRI anomaly values over the whole segment. We choose a 2 mm 

410 t

411 a

412 e

413 d

414 v

415 a

416 month−1 × 1 year bin (Fig. 3) to work out the percentage of the droughts within each bin. 

417 The analysis is performed for the 1921-1970 time period, and for the periods 2011-2040, 

418 2041-2070, 2071-2100. To evaluate if the probability differences relative to 1921-1970 are 

419 attributable to anthropogenic climate change, we apply the same method to the 3,000-year 

420 CTRL. We randomly select a 50-year and a 30-year non-overlapping time spans, and com-

421 pute the number of droughts for each duration-drought intensity bin. We repeat this 30 times 

422 to mimic the 30-member ensemble and so work out the probability differences between the 

423 50-year and 30-year periods. The whole process is then repeated 10,000 times to create an 

424 empirical probability distribution of the probability differences for each bin: anomalies out-

425 side the range of the distribution are attributed to external forcing and considered detectable 

426 against internal climate variability. 
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Figure 1: a, Mean 2015-2017 AMJJAS rainfall anomaly relative to 1921-1970. The dashed (continuous) line 

denotes negative anomalies beyond 1 (1.5) standard deviation. b, Time series of the observed (GPCC, blue; 

CRU, red) 3-yr running mean AMJJAS Winter Rainfall Index (WRI, see Methods) from 1901 to 2017. The 2015-

2017 mean is a record-breaking over the period 1901-2017. Mean 1921-1970 AMJJAS rainfall (mm/month) in 

c, observations (GPCC), d, SPEAR_MED, and e, SPEAR_LO. The red lines encircles the area receiving at 

least 65% of the total annual rainfall during AMJJAS used to defne WRI. f, Monthly WRI in observations and 

models. Comparison of SPEAR_MED with SPEAR_LO shows how an enhanced resolution is key to capture 

fner scale regional details of winter rainfall in the relatively small SSA Mediterranean region. 
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Figure 2: a, Empirical probability distribution of the three-year winter rainfall anomalies due to internal variability alone (light pink, from CTRL) and natural variability, natural 

forcing and anthropogenic forcing (salmon, from SSP5-8.5) in the period 1980-2000 b, 1990-2010. c, 2000-2020. d, and 2010-2030. Black vertical lines represent the 2015-2017 

AMJJAS rainfall anomaly (-11.5 mm/month, averaged value across GPCC, CRU, UDELAW). e, and f, Decadal probability of occurrence of a three-year winter rainfall anomaly equal 

to or worse than in 2015-2017 in HIST, SSP2-4.5 and SSP5-8.5. Shading denotes the 95% confdence interval from bootstrap resampling. The blue constant line denotes the CTRL 

probability for such an event, and the blue constant dashed line that from the NATURAL run after concatenating all 30 ensemble members. g, Probability (risk) ratios (to the mean 

1921-1980) with 95% uncertainty intervals for event_1517 in 2015-2017, and h, at the end of the 21st century (2080-2100). Models are top-down ordered from the most skillful in 

reproducing WRI variability and seasonal cycle (SI Appendix, Fig. SS and Table S2). Asterisk (*) denotes models for which a relative threshold (1st percentile) is used to estimate the 

probability (see Methods). i, and j as in e, f but for a four-year anomaly of the magnitude of the 2015-2017 drought. 
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Figure 3: Change of probability of large annual AMJJAS rainfall anomalies (≤ −0.5σ) as a function 

of duration (years) and intensity (mean WRI anomaly over the drought duration period) for the, a, 

2010-2040 period relative to 1921-1970 baseline (contours), b, 2040-2070 period, and, c, 2070-2100 

period under SSP2-4.5. Green dashed line encircles values that are outside the range of natural 

variability. d-f As in a-c but for the SSP5-8.5 pathway. 
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Figure 4: Decadal evolution of wintertime (AMJJAS) rainfall mean anomalies (ensemble average, 

shading) relative to the 1921-1970 climate from the a, HIST, b, SSP2-4.5. and c, SSP5-8.5 runs. Gray 

crosses denote changes in wintertime rainfall mean state that are not distinguishable from internal 

climate variability as estimated from fully coupled control simulations (see Methods for details). 
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Figure 5: Ensemble mean anomalies (shading) of April-May (AM), June-July (JJ) and August-

September (AS) sea level pressure (upper row; hPa) and 300-hPa eddy kinetic energy (m2 s−2) for 

the period 2071-2100 relative to 1921-1970. Contours denote the 1921-1970 climatological values. 
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